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Abstract

1 THE EVIDENCE APPROXIMATION

It hasrecentlybecomepopularto considerthe problemof training neuralnetsfrom a
Bayesianviewpoint(BuntineandWeigend1991,MacKay1992).Theusualwayof doing
this startsby assumingthat thereis someunderlyingtargetfunction f from Rn to R, pa-
rameterizedby anN-dimensionalweightvectorw. We areprovidedwith a trainingsetL
of noise-corruptedsamplesof f. Ourgoalis to makeaguessfor w, basingthatguessonly
on L. Now assumewe have i.i.d. additive gaussiannoise resulting in P(L | w, β) ∝
exp(-β χ2(w, L)), whereχ2(w, L) is theusualsum-squaredtrainingseterror,andβ reflects
thenoiselevel.AssumefurtherthatP(w | α) ∝ exp(−αW(w)), whereW(w) is thesumof
thesquaresof theweights.If thevaluesof α andβ areknownandfixed, to thevaluesαt
andβt respectively,thenP(w) = P(w | αt) andP(L | w) = P(L | w, βt). Bayes’theoremthen
saysthat the posterior is proportionalto the likelihood timesthe prior, i.e., P(w | L) ∝
P(L | w) × P(w). Consequently,finding the w minimizing χ2(w, L) + (αt / βt)W(w) is
equivalentto finding the maximum a posteriori (MAP) w - the w which maximizes
P(w | L). This can be viewed as a justification for gradient descent with weight-decay.

Oneof thedifficulties with theforegoingis thatwe almostneverknow αt andβt in real-
world problems.Onewayto dealwith this is to estimateαt andβt, for examplevia atech-

TheBayesian“evidence”approximation,which is closelyrelatedto general-
izedmaximumlikelihood, hasrecentlybeenemployedtodeterminethenoise
andweight-penaltytermsfor trainingneuralnets.This papershowsthatit is
far simplerto performtheexactcalculationthanit is to setup theevidence
approximation.Moreover,unlike that approximation,the exactresult does
not haveto be re-calculatedfor everynew dataset.Nor doesit requirethe
running of complex numericalcomputercode (the exact result is closed
form). In addition,it turnsout that for neuralnets,theevidenceprocedure’s
MAP estimateis in toto approximationerror.Anotheradvantageof theexact
analysisis that it doesnot leadto incorrectintuition, like theclaim thatone
can“evaluatedifferentpriorsin light of thedata”.Thispaperendsby discuss-
ing sufficiencyconditionsfor theevidenceapproximationto hold,alongwith
the implicationsof thoseconditions.Although couchedin termsof neural
nets,theanalysisof thispaperholdsfor anyBayesianinterpolationproblem.
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niquelike cross-validation.In contrast,a Bayesianapproachto this problemwould beto
set priors overα andβ, and then examine the consequences for the posterior ofw.

This Bayesianapproachis thestartingpoint for the“evidence”approximationcreatedby
Gull (Gull 1989).Onemakesthreeassumptions,for P(w | γ), P(L | w, γ), andP(γ). (For
simplicity of theexposition,from now on thetwo quantitiesα andβ will beexpressedas
the two components of the single vectorγ.) The quantity of interest is the posterior:

                              P(w | L) = ∫ dγ P(w, γ | L)
                           =∫ dγ [{P(w, γ | L) / P(γ | L)} × P(γ | L)]                             (1)

Theevidenceapproximationsuggeststhatif P(γ | L) is sharplypeakedaboutγ = γ', while
thetermin curly bracketsis smoothaboutγ = γ', thenonecanapproximatethew-depen-
denceof P(w | L) asP(w, γ' | L) / P(γ' | L) = P(w | γ', L) ∝ P(L | w, γ') P(w | γ'). In other
words,with theevidenceapproximation,onesetstheposteriorby takingP(w) = P(w | γ')
andP(L | w) = P(L | w, γ'), whereγ' is theMAP γ. This procedureis a closerelativeof
non-Bayesian statistics’ generalized maximum likelihood (Davies and Anderssen 1986).

P(L | γ) = ∫ dw [P(L | w, γ) P(w | γ)] is knownasthe“evidence”for L givenγ. Forrelatively
smoothP(γ), thepeakof P(γ | L) is thesameasthepeakof theevidence(hencethename
“evidenceapproximation”).MacKay hasappliedthe evidenceapproximationto finding
theposteriorfor theneuralnetP(w | α) andP(L | w, β) recountedabovecombinedwith a
P(γ) = P(α, β) whichis uniformoverall α andβ from 0 to +∞ (MacKay1992).In addition
to the error introducedby the evidenceapproximation,additionalerror is introducedby
his needto numericallyapproximateγ'. MacKay statesthat althoughhe expectshis ap-
proximationfor γ' to be valid, “it is a matterof further researchto establish[conditions
for] this approximation to be reliable”.

In this paperno usewill bemadeof thefact thatw is a neuralnetparameter;theanalysis
goesthroughregardlessof theprecisemappingfrom w to f. In addition,althoughthispa-
perwill only explicitly considerusingevidenceto sethyperparameterslike α andβ, most
of whatwill besaidalsoappliesto theuseof evidenceto setothercharacteristicsof the
learner,like its architecture.Section2 of this paperpresentsthe exactcalculationfor
MacKay’sscenario,comparesit with theevidenceapproximation,anddiscussestheap-
parentability of theevidenceapproximationto givereasonableresults.Section3 discuss-
esthefallaciousview thatwith theevidenceapproximationonecansetpriors in an“ob-
jectivemanner”by usingthedata.A proof is presentedthatfor non-pathologicalP(γ), the
prior given by the evidenceapproximationcanneverbe correct(this result castssome
doubton theself-consistencyof thevarious“first principles”argumentswhichhavebeen
offeredin favor of particularpriors,e.g.,suchargumentsin favor of theentropicprior).
Finally, section4 discussessufficiencyconditionsfor the evidenceapproximationto be
valid. It alsoshowshow to usesomeof thoseconditionsboth to testthe validity of the
evidence approximation and to aid calculations under that approximation.

2 THE EXACT CALCULATION

It is always true that theexact posterior is given by

P(w)  =  ∫ dγ P(w | γ) P(γ),
P(L |w)  =  ∫dγ {P(L | w, γ) × P(w | γ) × P(γ)} / P(w);
P(w | L) ∝ ∫ dγ {P(L | w, γ) × P(w | γ) × P(γ)} (2)

where the proportionality constant, being independent ofw, is irrelevant.

Using the neuralnet P(w | α) and P(L | w, β) given above,and MacKay’s P(γ), it is
straight-forwardto useequation2 to calculatethatP(w) ∝ [W(w)]-(N/2 + 1), whereN is the
numberof weights.Similarly, with m thenumberof pairsin L, P(L | w) ∝ [χ2(w, L)] -(m/

2 + 1). (See(Wolpert1992)and(BuntineandWeigend1991),andallow theoutputvalues
in L to rangefrom -∞ to +∞.) Thesetwo resultsgive ustheexactlycorrectposterior,P(w
| L) ∝ [W(w)]-(N/2 + 1) × [χ2(w, L)] -(m/2 + 1). In contrast,theevidence-approximatedpos-
terior ∝ exp[-α'(L) W(w)  -  β'(L) χ2(w, L)].
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It is illuminatingto comparetheexactcalculationto thecalculationbasedontheevidence
approximation.A lot of relativelycomplicatedmathematicsfollowedby somecomputer-
basednumericalestimationis necessaryto arriveat theevidenceapproximation’sanswer.
(This is dueto the needto approximateγ'.) In contrast,to performthe exactcalculation
oneonly needevaluateasimplegaussianintegral,whichcanbedonein closedform, and
in particularonedoesn’tneedto performanycomputer-basednumericalestimation.In ad-
dition, with theevidenceprocedureγ' mustbere-evaluatedfor eachnewdataset,which
meansthattheformulagiving theposteriormustbere-derivedeverytimeoneusesanew
dataset.In contrast,the exactcalculation’sformula for the posteriorholdsfor any data
set;no re-calculationsarerequired.Soasapracticaltool for finding theposterior,theex-
actcalculationis bothfar simplerandquickerto usethanthecalculationbasedon theev-
idence approximation.

Anotheradvantageof theexactcalculation,of course,is that it is exact. Indeed,consider
thesimplecasewherethenoiseis fixed, i.e.,P(γ) = P(γ1) δ(γ2 - βt), sothat theonly term
weneedto “dealwith” is γ1 = α. Setall otherdistributionsasin (MacKay1992).For this
case,thew-dependenceof theexactposteriorcanbequitedifferent from thatof theevi-
dence-approximatedposterior.In particular,theMAP estimatebasedon theexactcalcu-
lation is w = 0. This is, of course,a silly answer,andreflectsthepoorchoiceof distribu-
tions madein (MacKay1992).In particular,it reflectsthe un-normalizabilityof MacK-
ay’sP(α). Howevertheimportantpoint is thatthis is theexactly correct answerfor those
distributions.Ontheotherhand,theevidenceprocedurewill resultin anMAP estimateof
argminw [χ2(w, L) + (α' / β')W(w)], whereα' andβ' arederivedfrom L. Oftenthisanswer
is far from w = 0. Notealsothattheevidenceapproximations’sanswerwill vary,perhaps
greatly,with L, whereasthecorrectansweris L-independent.Finally, sincethecorrectan-
sweris w = 0, thedifferencebetweentheevidenceprocedure’sanswerandthecorrectan-
sweris equalto theevidenceprocedure’sanswer.In otherwords,althoughthereexistsce-
nariosfor which theevidenceapproximationis valid, neuralnetswith flat P(γ1) is notone
of them;for thisscenario,theevidenceprocedure’sansweris in toto approximationerror,
nomatterhowpeakedP(γ | L) is. (A possiblereasonfor this is presentedin section4.) So
neuralnetswith flat P(γ1) servesasan existenceproof that therearescenariosin which
the evidence procedure fails.

If oneuseda morereasonableP(α), uniform only from 0 up to a cut-off αmax, theresults
wouldbeessentiallythesame,for largeenoughαmax. To first order,theeffectontheexact
posterioris to introduceasmallregionaroundw = 0 in whichP(w) behaveslike adecay-
ing exponentialin W(w) (theexponentbeingsetby αmax) ratherthanlike [W(w)]-(N/2 + 1)

(T. Wallstrom, private communication).For large enoughαmax, the region is small
enoughsothat theexactposteriorstill hasa peakvery closeto 0. On theotherhand,for
largeenoughαmax, thereis no changein theevidenceprocedure’sanswer.(Generically,
themajoreffectontheevidenceprocedureof modifyingP(γ) is not to changeits guessfor
P(w | L), but ratherto changetheassociatederror,i.e.,changewhethersufficiencycondi-
tionsfor thevalidity of theapproximationaremet.Seebelow.)Evenwith anormalizable
prior, the evidence procedure’s answer is still essentially all approximation error.

Consideragain thecasewheretheprior over bothα andβ is uniform.With theevidence
approximation,thelog of theposterioris -{ χ2(w, L) + (α' / β')W(w) }, whereα' andβ'
aresetby thedata.On theotherhand,theexactcalculationshows thatthelog of thepos-
terior is really given by -{ ln[χ2(w, L)] + (N+2 / m+2) ln[W(w)] }. What’s interesting
aboutthis is notsimply thelogarithms,absentfrom theevidenceapproximation’sanswer,
but alsothefactormultiplying theterminvolving the“weight penalty”quantityW(w). In
theevidenceapproximation,thisfactoris data-dependent,whereasin theexactcalculation
it only dependson thenumberof data.Moreover, thevalueof this factorin theexactcal-
culation tells us that if the numberof weightsincreases,or alternatively the numberof
trainingexamplesdecreases,the“weight penalty”termbecomesmoreimportant,andfit-
ting thetrainingexamplesbecomeslessimportant.(It is not at all clearthatthis trade-off
betweenN andm is reflectedin (α' / β'), thecorrespondingfactorfrom theevidenceap-
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proximation.)As before,if wehaveuppercut-offs onP(γ), sothattheMAP estimatemay
bereasonable,thingsdon’t changemuch.For sucha scenario,theN vs.m trade-off gov-
erningtherelative importanceof W(w) andχ2(w, L) still holds,but only to lowestorder,
andonly in theregion sufficiently far from theinfinite-cutoff-singularities(like w = 0) so
that P(w | L) behaves like [W(w)]-(N/2 + 1)× [χ2(w, L)]-(m/2 + 1).

All of this notwithstanding,the evidenceapproximationhasbeenreportedto give good
resultsin practice.This shouldnot bevery surprising.Therearemanyprocedureswhich
areformally illegal butwhichstill givereasonableadvice.Indeed,somemightclassifyall
of non-Bayesianstatisticsthatway.Theevidenceprocedurefixes γ to a singlevalue,es-
sentially by maximumlikelihood. That’s not unreasonable,just usually illegal, from a
Bayesianperspective(aswell asfar morelaboriousthanthecorrectBayesianprocedure).
Indeed,giventhepoorchoiceof distributionsin (MacKay1992),onemightarguethatus-
ing anapproximationwhich inducesa largeerror is quitesensible,sincedoingsoallows
oneto avoid thesilly answersdemandedby thosepoordistributionsundertheexactcal-
culation.Of course,abetterapproachis to choosesensibledistributionsin thefirst place.

In anycase,closescrutinyof thetestsof theevidenceapproximationreportedin (MacKay
1992)revealsthoseteststo be lessthanfully convincing.For paper1, the evidenceap-
proximationgivesα' = 2.5.For anyotherα in anintervalextendingthree orders of mag-
nitude about this α', test set error is essentiallyunchanged(seefigure 5 of (MacKay
1992)).Sincesucherroris whatwe’reultimatelyinterestedin, this is hardlyadifficult test
of theevidenceapproximation.In paper2 of (MacKay1992)theinitial useof theevidence
approximationis “a failureof Bayesianprediction”;P(γ | L) doesn’tcorrelatewith testset
error (seefigure 7 of that paper).MacKay addressesthis by arguingthat poor Bayesian
resultsareneverwrong,butonly “an opportunityto learn” (in contrastto poornon-Baye-
sianresults?).Accordingly,hemodifiesthesystemwhile looking at the test set, to gethis
desiredcorrelationon thetestset.To do this legally,heshouldhaveinsteadmodifiedhis
systemwhile lookingatavalidationset,separatefrom thetestset.Howeverif hehaddone
that,it would haveraisedthequestionof why oneshoulduseevidenceat all; sinceoneis
alreadyassumingthatbehavioron a validationsetcorrespondsto behavioron a testset,
why not just setα andβ via cross-validation?

3 EVIDENCE AND THE PRIOR

Considertheevidenceapproximationfor theprior, P(w) = P(w | γ'). Sinceγ' dependson
thedataL, it would appearthatwhentheevidenceapproximationis valid, thedatadeter-
minestheprior, or asMacKayputsit, “the modernBayesian... doesnotassignthepriors
- manydifferentpriorscanbe... comparedin the light of thedataby evaluatingtheevi-
dence”(MacKay1992).If this weretrue,it would removeperhapsthemostmajorobjec-
tion which hasbeenraisedconcerningBayesiananalysis- theneedto choosepriors in a
subjectivemanner,independentof thedata.HowevertheexactP(w) givenby equation2
is data-independent. Soonehas chosentheprior, in a subjectiveway, independentof the
data.The evidenceprocedureis simply providing a data-dependentapproximationto a
data-independentquantity.In nosensedoestheevidenceprocedureallow oneto side-step
the need to make subjective assumptions which fix P(w).

SincethetrueP(w) doesn’tvarywith L whereastheevidenceapproximation’sP(w) does,
onemight suspectthat thatapproximationto P(w) canbequitepoor,evenwhentheevi-
denceapproximationto theposterioris good.Indeed,if P(w | γ1) is exponential,thereis
no non-pathological scenario for which the evidence approximation to P(w) is correct:

Theorem 1: Assume that P(w | γ1) ∝ e-γ1 U(w) for somefunctionU(.). Then the only way

that one can have P(w) ∝ e-α U(w) for some constant α is if P(γ1) = 0 for all γ1 ≠ α.

Proof: Ourproposedequalityis exp(-α × U) = ∫dγ1{P(γ1) × exp(-γ1 × U)} (thenormaliza-
tion factorshavingall beenabsorbedinto P(γ1)). We mustfind anα anda normalizable
P(γ1) suchthatthis equalityholdsfor all allowedU. Let u besuchanallowedvalueof U.
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Takethederivativewith respectto U of bothsidesof theproposedequalityt times,and
evaluatefor U = u. Theresultis αt = ∫dγ1((γ1)t × R(γ1)) for anyintegert ≥ 0, whereR(γ1)

≡ P(γ1) exp(u(α - γ1)). Usingthis,weseethat∫dγ1((γ1 - α)2 × R(γ1)) = 0. SincebothR(γ1)

and(γ1 - α)2 arenowherenegative,thismeansthatfor all γ1 for which (γ1 - α)2 ≠ 0, R(γ1)
must equal zero. Therefore R(γ1) must equal zero for allγ1 ≠ α. QED.

Notethat if the likelihood is nowhere-zero,theorem1 meansthat thereexistsa non-zero
lower boundon theerrorof usingtheevidenceprocedureto settheposterior.Sowe are
assuredthattherewill alwaysbesome errorwith usingtheevidenceprocedure- theonly
question is how much.

Sincethe evidenceapproximationfor the prior is wrong,how canits approximationfor
theposterioreverbegood?To answerthis, write P(w | L) = P(L | w) × [P'(w) + E(w)] /
P(L), whereP'(w) is theevidenceapproximationto P(w). (It is assumedthatweknowthe
likelihood exactly.)This meansthatP(w | L) - {P(L | w) × P'(w) / P(L)}, theerrorin the
evidenceprocedure’sestimatefor theposterior,equalsP(L | w) × E(w) / P(L). Sowe can
havearbitrarily largeE(w) andnot introducesizableerrorinto theposteriorof w, butonly
for thosew for which P(L | w) is small.As L varies,thew with non-negligiblelikelihood
vary,andtheγ suchthatfor those w P(w | γ) is agoodapproximationto P(w) varies.When
it works, theγ' given by the evidence approximation reflects this changing ofγ with L.

As an aside,notethat theorem1 suggeststhat no “first principles” argumentfor a prior
P(w) canbeself-consistentif it saysthattheprior is proportionalto exp(-αU(w)) for some
U(.) but doesnot fix α. Sincewith suchanargumentwe do not know whatα is, we have
ignoranceconcerningit, andthatignorancemustbereflectedin anon-deltafunctionP(α).
In turn, by theorem1, sucha distributionensuresthat P(w) is not proportionalto exp(-
α'U(w)) for someα'. In particular,thefirst principlesargumentswhichhavebeenoffered
in favorof theso-called“entropicprior” butwhichdonot fix α (e.g.,(Skilling 1989))suf-
fer from this problem.

4 SUFFICIENCY CONDITIONS FOR EVIDENCE TO WORK

Note that regardlessof how peakedthe evidenceis, -{ χ2(w, L) + (α' / β')W(w) } ≠
-{ ln[χ2(w, L)] + (N+2 / m+2) ln[W(w)] }; theevidenceapproximationalwayshasnon-
negligibleerrorfor neuralnetsusedwith flat P(γ). To understandthis,onemustcarefully
elucidatea setof sufficiencyconditionsnecessaryfor theevidenceapproximationto be
valid. (Unfortunately,thishasneverbeendonebefore.A directconsequenceis thatnoone
has ever formally justified a particular use of the evidence approximation.)

Onesuchsetof sufficiencyconditions,theoneimplicit in all attemptsto dateto justify the
evidenceapproximation(i.e.,theoneimplicit in thelogic of equation1),canbeintuitively
phrased as follows:

P(γ | L) is sharply peaked about a particularγ, γ'.                                (i)
P(w, γ | L) / P(γ | L) varies slowly aroundγ = γ'.                                (ii)

P(w, γ | L) is infinitesimal for allγ sufficiently far fromγ'.                     (iii)

Define“evidenceworks” to meanthatthereexistsa positiveconstantϕ andasmallposi-
tive constant∆ suchthat∆ ≥ | P(w | L) - ϕP(w | γ', L) | for all w. Let condition(i) mean
that thereexistsa small positive constantλ and a small positive constantδ suchthat
P(γ1 | L) / P(γ' | L) < λ for bothγ1 = γ' − δ andγ1 = γ' + δ. Let condition(ii) meanthat
across[γ' - δ, γ' + δ], | P(w | γ, L) - P(w | γ', L) | < τ, for somesmallpositiveconstantτ,
for all w. Let condition(iii) meanthat thereexistsa positivek suchthat the difference

| P(w | L) - k ∫γ'−δ
γ'+δ

dγ P(w, γ | L) | is boundedby a smallconstantε for all w. Hereand
throughoutthispaper,whenγ is multi-dimensional,sois δ. (In suchcasesphraseslike “for
both γ1 = γ' − δ andγ' + δ” (which occursin the definition of condition(i)) refer to the
pointson thesurfaceof ahypercuberatherthan(asin theone-dimensionalcasepresented
above)to the pair of points making up the surfaceof a one-dimensionalcube).It will
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sometimesbe useful to considera quantity closely relatedto (i), namely the integral

∫γ'−δ
γ'+δ

dγ P(γ | L); this quantity is defined to equal 1 -ρ.

It is only with k = 1 that theformal definition of condition(iii) implies theoriginal intu-
itiveedefinitioninvolving “infinitesimal” P(w, γ | L). In otherwords,thegivenformaldef-
inition of condition(iii) is aslightextensionof theoriginal informaldefinition. In this re-
gard,note that whenthe evidenceapproximationholdscondition(ii) implies condition
(iii), but with a k different from 1. (This is proven in the appendix.)

Theorem 2: When conditions (i), (ii), and (iii) hold, evidence works, with ϕ = k(1 − ρ) and
∆ = ε + τk(1 - ρ).

Proof: Condition(iii) gives | P(w | L) - k ∫γ'−δ
γ'+δ

dγ [P(w | γ, L) × P(γ | L)] | < ε for all

w. However | k ∫γ'−δ
γ'+δ

dγ [P(w | γ, L) × P(γ | L)] - k P(w | γ', L) ∫γ'−δ
γ'+δ

dγ P(γ | L) | <

τk × ∫γ'−δ
γ'+δ

dγ P(γ | L), by condition (ii). Combiningthesetwo results,we seethat

| P(w | L)  -  kP(w | γ' L) ∫γ'−δ
γ'+δ

dγ P(γ | L) |  <  ε  + τk  × ∫γ'−δ
γ'+δ

dγ P(γ | L). QED.

Notethattheproofof theorem2 wouldgo throughevenif P(γ | L) werenotpeakedabout
γ', or if it werepeakedaboutsomepoint far from the γ' for which (ii) and(iii) hold; no-
wherein the proof is the definition of γ' from condition (i) used.Howeverin practice,
whencondition(iii) is met,k = 1, P(γ | L) falls to 0 outsideof the interval [γ' - δ, γ' + δ],
andP(w | γ, L) staysreasonablyboundedfor all suchγ. (If this weren’t the case,then
P(w | γ, L) wouldhaveto fall to 0 outsideof [γ' - δ, γ' + δ], somethingwhichis rarelytrue.)
Sowecouldeitherjustgiveconditions(ii) and(iii), or wecouldgive(i), (ii), andtheextra
condition that P(w | γ, L) is small enough so that condition (iii) is met.

This k = 1 caseis perhapsthemostintuitive way of seing how (i) through(iii) give evi-
denceworking. With k = 1, condition(iii) meansthatwe canrestrictour attentionto the
region[γ' − δ, γ'+ δ], i.e.,wecanreplaceour full integralwith oneoverthatregion.(Con-
dition (i), by itself, doesnotgiveusthis.Seebelow)Condtion(ii) thenmeansthatwecan
pull P(w | γ, L) outsideof that integralover[γ' − δ, γ'+ δ], sinceit tells usthatP(w | γ, L)
is essentiallyconstantacrossthat region. This is essentiallywhat evidenceworking
amounts to.

It is importantto realizethattheorem2 hold for all δ andγ'. In otherwords,onecanpick
anyδ andγ', measuretheresultantε, τ, λ, ∆, andplugtheseinto theorem2. (At theexpense
of amuchmorelaboriouspresentation,thiscouldbeindicatedformally by writing ε(δ, γ'),
τ(δ, γ'), λ(δ, γ'), ∆(δ, γ') everywhere.)With few exceptions,thesameholdsfor theother
theoremspresentedhereinwhich involve conditions(i) through(iii). (Exampleof anex-
ception: as worded, theorem 3 only holds forλ < 1.)

Careshouldbe takenin applyingtheorem2 if thevalueof ϕ is not known.(Note thatϕ
cannot bederivedfrom normalizationoverw-space;bothP(w | L) andP(w | γ', L) areal-
readynormalized.)To seethis, rewrite our resultas | P(w | L) - P(w | γ', L )| ≤ ∆ +
(1 - ϕ)P(w | γ', L). If (1 - ϕ)P(w | γ', L) is not small, then the error in approximating
P(w | L) with P(w | γ', L) canbequitelarge.Notethoughthat if k ≅ 1 andP(γ | L) is suffi-
ciently peakedsothatρ is very small,thensolong asP(w | γ', L) (thequantityreferredto
in (ii)) is not large,theorem2 givesuswhatwewant,P(w | L) ≅ P(w | γ', L). Notealsothat
for all w1 andw2, [P(w1 | L)] / [P(w2 | L)] = [P(w1 | γ', L) + d1] / [P(w2 | γ', L) + d2],
whereboth |d1| and |d2| are boundedby ∆ / ϕ. Accordingly, if P(w2 | γ', L) >> ∆ / ϕ,
[P(w1 | L)]  /  [P(w2 | L)] ≅  [P(w1 | γ', L)]  / [P(w2 | γ', L).

In anycase,it shouldbenotedthatconditions(i) and(ii) by themselvesarenot sufficient
for theevidenceapproximationto bevalid. As anexample,havew beone-dimensional,
andlet P(w, γ | L) = 0 bothfor {|γ - γ'| < δ, |w - w*| < ν} andfor {|γ - γ'| > δ, |w - w*| > ν},
for someconstantsδ, ν, andw*. Let P(w, γ | L) beconstanteverywhereelse(within certain
boundsof allowedγ andw). For bothδ andν small,conditions(i) and(ii) hold: theevi-
denceis peakedaboutγ', andτ = 0. Yet for thetrueMAP w, w*, theevidenceapproxima-
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tion fails badly.Generically,thisscenariowill alsoresultin abig errorif ratherthanusing
theevidence-approximatedposteriorto guesstheMAP w, oneinsteadusesit to evaluate
theMAP f (whichdiffersfrom fMAP w in general)or theposterior-averagedf, ∫df f P(f | L).

Oneshouldnotethat thereis nothing“necessary”about thedefinitionsgivenabovefor
conditions(i) through(iii) andfor what it meansfor evidenceto work. In particular,one
couldreplacethe“for all w” clausesthroughoutthosedefinitionswith “for all w in a re-
gion of interestR”, andtheorem2 would still hold. (In additionthe theoremspresented
belowwould hold with only minor modifications.)As anotheralternative,ratherthande-
fining “evidenceworks” in termsof the supremumnorm, one might prefer a different
norm, saythe L1 or L2 norm. For sucha modified definition of “evidenceworks”, one
shouldmodify thedefinitionsof conditions(i) through(iii) accordingly,andagaintheo-
rem2 holds.For example,if condition(iii) is modifiedto meanthatε ≥ thew-integrated

difference ∫ dw {| P(w | L) - k ∫γ'−δ
γ'+δ

dγ P(w, γ | L) |}, andif condition(ii) is modified

similarly, thenconditions(ii) and(iii) jointly imply that“evidenceworks” asfar astheL1

norm is concerned.

In (Gull 1989)only condition(i) is mentioned(andwithoutaformaldefinition).Theanal-
ysis in (MacKay 1992)mentionscondition (ii) aswell, but not condition (iii). Neither
analysisplugsin for ε andτ, or in anyotherway usestheassumeddistributionsto infer
bounds on the error accompanying their use of the evidence approximation.

Intuitively, onemight think thatsinceγ' is the“dominantcontributingγ”, theevidenceap-
proximationshouldwork, in general.Theproblemis thatonecanjustaseasilyarguethat
the“dominantcontributingγ” for whatweare interestedin (namelyP(w | L) for thosew
with non-negligibleposterior)is givenby argmaxγ P(w, γ | L), notargmaxγ P(γ | L). After
all, P(w | L) is theγ-integral of P(w, γ | L), not of P(γ | L).

This suggeststhat for evidenceto work, γ' mustmaximizeP(w, γ | L), for thosew with
non-negligibleposterior.Indeed,sinceby (i) P(γ | L) is sharplypeakedaboutγ', it is hard
to seehow (ii) couldhold unlessP(w, γ | L) werealsosharplypeakedaboutγ', for those
w for which it is significantlynon-zero.This reasoningcanbeformalizedasfollows. (Es-
sentiallythesameresultcanalsobeprovenwith differentreasoning,justby invokingcon-
dition (iii), so long as k = 1. See the appendix.)

First,write P(w, γ | L) asP(w, γi, γ{j ≠i} | L), with {j ≠ i} indicatingall j valuesnotequalto
i. With thisnotation,P(w, γi, (γ'){j ≠i} | L) is theposteriorof w andγ, evaluatedwith all but
the i’th component ofγ set to theirγ' values. (So onlyγi will be varied.)

Theorem 3: If conditions(i) and(ii) holdandevidenceworks,thenfor all i andfor all w
suchthat P(w | L) > ∆ + τϕλ / (1 − λ), P(w, γi, (γ'){j ≠i} | L) musthavea peakin γi some-
where withinδi of (γ')i.

Proof: View δ asa vectorin thesamespaceasγ. View δi aseitherthei’th componentof
δ, or asthevectorwill all 0 components,exceptfor thei’th componentwhichhasthesame
valueasthevectorδ. (Thecontextwill makeit clearwhich meaningis beingassumed.)
Now chooseani. If thedistributionP(w, γi, (γ'){j ≠i} | L), consideredasafunctionof γi with
w fixed, hasa local maximumin the openinterval ((γ' - δ)i, (γ' + δ)i), thenwe’re done.
Thereforewe only needto considerthehypothesisthatP(w, γi, (γ'){j ≠i} | L) hasno local
maximumin that interval. Now if both P(w, γ' - δi | L) and P(w, γ' + δi | L) were <
P(w, γ' | L) (herebothγ' andδi arebeingviewedasvectors),it would follow thatour dis-
tribution P(w, γi, (γ'){j ≠i} | L) hasa local maximumover γi somewherein the interval
((γ' - δ)i, (γ' + δ)i), contraryto hypothesis.Thereforeoneof thosetwo endpointsmusthave
probability≥ thatof themiddlepoint.Without lossof generality,assumeit’s theendpoint
P(w, γ’ + δi | L); P(w, γ' | L) ≤ P(w, γ' + δi | L). Now examinetheratio P(w | γ' + δi, L) /
P(w | γ', L), which we canwrite as the productof ratios [P(γ' | L) / P(γ' + δi | L)] ×
[P(w, γ' + δi | L) / P(w, γ' | L)]. By our assumption,thesecondtermin squarebrackets≥
1. However by condition (i), the first term in squarebrackets> 1 / λ. Therefore
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P(w | γ' + δi, L) > P(w | γ', L) / λ, andthedifferenceP(w | γ' + δi, L) - P(w | γ', L) >
P(w | γ', L) × (λ-1 - 1). Usingcondition(ii), this meansthatP(w | γ', L) × (λ-1 - 1) < τ,
which in turn meansthatϕ × P(w | γ', L) is boundedaboveby (τ × ϕ × λ) / (1 − λ). If ev-
idenceworks,thismeansthatthequantityP(w | L) is boundedaboveby ∆ + τϕλ / (1 − λ).
If this is not the case,thenour hypothesisthat thereis no peakin the interval mustbe
wrong. QED.

So for thosew with non-negligibleposterior,for ε small, the γ-peakof P(w, γ | L) ∝
P(L |w, γ) × P(w | γ) × P(γ) must lie essentially within the peak of P(γ | L). Therefore:

Theorem 4: Assume that P(w | γ1) = exp(−γ1 U(w)) / Z1(γ1) for some function U(.),
P(L | w, γ2) = exp(-γ2 V(w, L)) / Z2(γ2, w) for some function V(., .), and P(γ) = P(γ1)P(γ2).
(The Zi act as normalization constants.) Then if evidence works and conditions (i) and (ii)
hold, for all w with non-negligible posterior the γ-solution to the equations

-U(w) + ∂γ1
 [ln(P(γ1) - ln(Z1(γ1))] = 0

-V(w, L) + ∂γ2
 [ln(P(γ2) - ln(Z2(γ2, w))] = 0

must like within the γ-peak of P(γ | L).

Proof: P(w, γ | L) ∝ {P(γ1) × P(γ2) × exp[-γ1U(w) - γ2 V(w, L)] } / {Z 1(γ1) × Z2(γ2, w)}.
For both i = 1 andi = 2, evaluate∂γi

[P(w, γi, (γ'){j ≠i} | L)], andsetit equalto zero.This

givesthe two equations.Now define“the γ-peakof P(γ | L)” to meana hyper-rectangle
with i-componentwidth 2δi, centeredon γ', wherehaving a “non-negligibleposterior”
meansP(w | L) > ∆ + τϕλ / (1 − λ). Applying theorem3, wegettheresultclaimed.QED.

Theorem4 providesuswith a testof theevidenceapproximation.Forexample,in MacK-
ay’s scenario,P(γ) is uniform, U(w) = W(w), andV(w, L) = χ2(w, L), soZ1 andZ2 are

proportional to (γ1)-N/2 and (γ2)-m/2 respectively.Thereforeif the vector { γ1, γ2} =

{N / [2W(w)], m / [2χ2(w, L)]} doesnot lie within thepeakof theevidencefor a w with
non-negligibleposterior,it is not truethatconditions(i) and(ii) holdandevidenceworks.
(In regardsto finding sucha w, notethatif evidenceworkswith ϕ ≅ 1, thenthew theev-
idence approximation considers to be the MAPw will have a non-negligible P(w | L).)

That γ'1 / γ'2 mustapproximatelyequal[N χ2(w, L)] / [m W(w)] shouldnot be too sur-
prising.If theevidenceapproximationis valid, thenin particulartheevidenceprocedure’s
MAP w shouldbecloseto thetrueMAP w (assumingtheposteriorsin questionaren’tex-
ceedinglyflat overa largerange).And if we setthew-gradientof both theevidence-ap-
proximatedandexactposteriorto zero,anddemandthatthesamew, w', solvesbothequa-
tions,we getγ'1 / γ'2 = [(N + 2) χ2(w', L)] / [(m + 2)W(w')]. (Unfortunately,if onecon-
tinuesandevaluates∂wi∂wjP(w | L) at w', oftenonefinds thatit hasoppositesignsfor the
two posteriors.So the w maximizingoneposteriorminimizestheotherone - a graphic
failure of the evidence approximation.)

It is not clearfrom theprovidedneuralnetdatawhetherthetestof theorem4 is passedin
(MacKay1992).Howeverit appearsthatthecorrespondingconditionis not met,for γ1 at
least,for the scenarioin (Gull 1992) in which the evidenceapproximationis usedwith
U(.) beingtheentropy.(See(Strausset al. 1993,Wolpert et al. 1993).)Sinceconditions
(i) through (iii) are sufficient conditions,not necessaryones,this doesnot prove that
Gull’s useof evidenceis invalid. (It is still anopenproblemto delineatethefull iff for the
evidenceapproximationbeingvalid, thoughit appearsthatmatchingof peaksasin theo-
rem3 is necessary.See(Wolpertet al. 1993).)Howeverthis doesmeanthatthe justifica-
tion offeredby Gull for hisuseof evidenceis apparentlyinvalid. It mightalsoexplainwhy
Gull’s resultswere “visually disappointingand ... clearly ... ‘over-fitted’”, to use his
terms.

Notethatthefirst equationin theorem4 doesnot dependon theexponentialnatureof the
likelihood; it holdssolong asP(L | w, γ) = P(L | w, γ2). Notealsothat if evidenceworks,
thatequationsetsrestrictionsonthesetof w whichhavenon-negligibleposteriorandalso
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obeyconditions(i) and(ii). For example,in MacKay’s scenariothat equationsaysthat
N / 2U(w) mustlie within the width of the evidencepeak.If δ is small, this meansthat
unlessall w with non-negligibleposteriorhaveessentiallythesameU(w), conditions(i)
and(ii) cannot hold for all of them.So if the trueposteriorhaspeakswith significantly
differentU(w)), thenconditions(i) and(ii) cannothold.(Notethatdependingonthelike-
lihood, both P(w | L) and P(w | L, γ') can be multi-modal even when P(γ | L) is not.)

Finally, if for somereasononewishesto know γ', theorem4 cansometimesbe usedto
circumventthecommondifficulty of numericallyevaluatingP(γ | L). To do this, oneas-
sumesthatconditions(i) through(iii) hold. Thenonefinds any w with a non-negligible
posterior(say by use of the evidenceapproximationcoupledwith approximationsto
P(γ | L)). One usesthat w in theorem4 to find a γ which must lie within the peakof
P(γ | L), and therefore must lie close to the correct value ofγ'.

4 CONCLUDING REMARKS

Theremight bescenariosin which theexactcalculationof thequantityof interestis in-
tractable,so thatsomeapproximationis necessary.This is oftenthecase,for exampleif
the quantityof interestis not the posterior,but ratherthe posterioraverageof f. If one
couldprovethat theevidenceapproximationgivesa goodestimateof sucha quantityof
interest,directly,without first relatingerror in thatquantityto error in theposterior,then
onecouldbypasstestingconditions(i) through(iii), andjustifying useof theevidenceap-
proximation might be relatively straight-forward.Alternatively, if one’s choice of
P(w | γ), P(γ), andP(L | w, γ) is poor,theevidenceapproximationwould beusefulif the
errorin thatapproximationsomehow“cancels”errorin thechoiceof distributions.How-
everif onebelievesone’sdistributions,andif thequantityof interestis (beingrelateddi-
rectly to) P(w | L), thenataminimumoneshouldcheckconditions(i) through(iii) before
usingtheevidenceapproximation.Whenoneis dealingwith neuralnets,oneneedn’teven
do that; the exact calculation is quicker and simpler than the evidence approximation.

It shouldbeemphasizedthattheerrorsdiscussedin thispaperareonly thoseof implemen-
tation,only thoseof aparticularapproximation.Thetheoreticalcontextof theevidenceap-
proximation - conventionalBayesiananalysis- is onewhosefundamentalaxiomsand
concernsare,arguably,thecorrectonesfor addressingmanyof theissuesof interestin real
world supervisedlearning.In this the work of MacKay andGull differs from the work
which is conductedin certainalternativeapproachesto theoreticalsupervisedlearning,ap-
proacheswhich areignorantof thesubtlerelationshipbetweenthefoundationsof a math-
ematicsanditsapplicabilityto therealworld.Unfortunatelyfor MacKayandGull, whereas
thoseotherapproachesaresomewhatentrenchedin the field of neuralnets,theevidence
procedureis arelativenew-comer.As aconsequence,it is morereadilyheldto publicscru-
tiny than are those other approaches.

Appendix

Thisappendixprovesthatwhenevidenceworks,condition(ii) givecondition(iii). There-
fore when condition(ii) holds,condition(iii) can be usedas a checkto seeif evidence
works.Next thisappendixshowsthattheneedfor thepeakof P(w, γ | L) to havethesame
γ asthepeakof P(γ | L) canbederivedfrom condition(iii) by itself, without invoking (i)
and (ii).

Theorem A.1: If conditions (ii) holds, and evidence works, then condition (iii) holds, with
k = ϕ / (1 -ρ), and ε = ∆ + τϕ.

Proof: Write σ ≡ ∫γ'−δ
γ'+δ

dγ [P(w | γ, L) P(γ | L)] = ∫γ'−δ
γ'+δ

dγ [P(w | γ', L) P(γ | L)] +

∫γ'−δ
γ'+δ

dγ [{P(w | γ, L) - P(w | γ', L)} × P(γ | L)]. By condition(ii), this equalsP(w | γ', L)

× (1 - ρ) + ∫γ'−δ
γ'+δ

dγ [stuff(γ) × P(γ | L)], where“stuff(γ)” is bounded(in magnitude)by
τ. Thereforeσ is boundedaboveby [P(w | γ', L) + τ] × (1 - ρ). Howeverwesimilarly know
that σ is boundedbelow by [P(w | γ', L) − τ] × (1 - ρ). Combiningour resultsgives
| {P(w | γ', L) - [σ / (1 - ρ)]} | ≤ τ. Using the definition of “evidenceworks”, we get
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| {P(w | L)  -  [σϕ / (1 -ρ)]} |  ≤ τϕ + ∆. QED.

It is possibleto provethatpeaksmustcancelwithoutusingconditions(i) and(ii). Forex-
ample, condition (iii) suffices, if k = 1:

Theorem A.3: If condition(iii) holdswith k = 1, thenfor all w suchthatP(w | L) > c > ε,
for all i, P(w, γi | L) must have aγi-peak somewhere withinδi[1 + 2ε / (c -ε)] of (γ')i.

Proof: Condition(iii) with k = 1 meansthatP(w | L) - ∫γ'−δ
γ'+δ

δγ P(w, γ | L) < ε. Now
extendout to infinity the limits of integrationof the integralsover γ{j ≠i} . This gives

P(w | L) - ∫(γ'−δ)i
(γ'+δ)i dγi P(w, γi | L) < ε. Fromnow on thei subscripton γ andδ will be

implicit. We havebothε > ∫γ'+δ
γ'+δ+r

dγ P(w, γ | L) andε > ∫γ'−δ−r
γ'−δ

dγ P(w, γ | L), for
anyscalarr > 0. Now assumethatP(w, γ | L) doesn’thaveapeakanywherein theinterval
[γ' - δ - r, γ' + δ + r]. Define γ* ≡ argmaxγ∈[γ'-δ, γ'+δ] {P(w, γ | L)}. Givenour no-peaks
assumption,it is not possiblethat both the interval [γ' - δ - r, γ' - δ] and the interval
[γ' + δ, γ' + δ + r] containpointsγ for which P(w, γ | L) < P(w, γ∗ | L). Sowithout lossof
generality,we canassumethat for any γ ∈ [γ' + δ, γ' + δ + r], thevalueof P(w, γ | L) is
boundedbelowby themaximalvalueit takeson in theinterval [γ' - δ, γ' + δ]. Usingthis

gives∫γ'+δ
γ'+δ+r

dγ P(w, γ | L) ≥ (r / 2δ) × ∫γ'−δ
γ'+δ

dγ P(w, γ | L). This in turn meansthat

∫γ'−δ
γ'+δ

dγ P(w, γ | L) < 2δε / r. But sinceP(w | L) < ε + ∫γ'−δ
γ'+δ

dγ P(w, γ | L), thismeans
thatP(w | L) < ε(1 + 2δ / r). Soif P(w | L) > c (c aconstant> ε), r < 2δε / (c - ε). If r exceeds
this value, our assumptionthat P(w, γ | L) doesn’t have a peak anywhere in
[γ' - δ - r, γ' + δ + r] mustbewrong. In otherwords,theremustbea peakof P(w, γ | L)
within δ(1 + 2ε/(c - ε)) of γ'. QED.
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